
Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 1 © Andrew Davison 2017

Part 7: Cross-application Modules

Chapter 41. Printing

Java's Print Service (JPS) and Office's printing APIs

nicely compliment each other. For example, since Java 1.4

(February 2002), JPS has included printer discovery based

on document types and printer attributes. but Office's API

lacks such capabilities. JPS cannot easily print much

beyond text and images; binary data can be sent to a

printer, but it's left to the device to interpret and render it,

which is only possible in high-end printers, not ordinary

inkjets and laser printers. In contrast, Office can print a

very wide range of document formats, including ODF,

Microsoft, and PDF files.

This chapter starts by describing JPS's PrintService, which I'll use later to select a

printer for the Office API. Then there's an overview of the printing capabilities of the

Office API, with examples of how to print Writer, Impress, and Calc files.

The bad news is that Office's printing API has a few bugs and missing features. By

'missing' I mean parts of Office's printing GUI with no equivalents in the API. Also,

buggy features in the API, such as the printing of multiple pages/sheet and slide

handouts, work flawlessly in the GUI.

I'll finish with a short discussion of command line printing in Windows. The OS has

several print utilities that are a little hard to find and use. Also, Office can be started

from the command line in order to print documents.

1. The Java Print Service (JPS)

Java 1.4 saw the introduction of the Java Print service (JPS) API which allows a

printer to be selected based on document types and attributes such as color output,

paper sizes, and double-sided printing.

JPS printing passes through four stages:

1. Selection of a print service (i.e. a printer or print driver), represented by a

PrintService instance. The programmer can supply document types and printer

attributes to limit the search.

2. Creation of a Doc object for the document that's to be printed.

3. Creation of a print job combining the Doc object and print request attributes. A

listener can be attached to monitor what's happening during the printing.

4. The printing is started, and performed asynchronously.

Document types are encoded as DocFlavor objects which contain data source details

(e.g. whether the document comes from an input stream or a URL), and a MIME type

(e.g. image/gif, application/pdf). A common misconception about DocFlavor is that it

Topics: The Java Print

Service (JPS); Printing

in Office Writer,

Impress, Calc; Viewing

a Document's Print

Properties; Specialized

Printing: Writer,

Impress, Calc; Hacking

the GUI; Command

Prompt Printing

Example folders:

"Printing Tests" and

"Utils"

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 2 © Andrew Davison 2017

means that Java can print that kind of document. A DocFlavor is used to check

whether a printer supports a document type, and the answer may be "no".

The following code locates print services that support GIF documents sent from a file:

// stage 1: find print services for GIF files

DocFlavor gifFlavor = DocFlavor.INPUT_STREAM.GIF;

PrintService[] services =

 PrintServiceLookup.lookupPrintServices(gifFlavor, null);

The matching print services are returned in a PrintService[] array.

lookupPrintServices()'s second argument (which is null here) could be a set of print

request attributes (PRAs).

There are four kinds of print attributes. The first two are requests sent from a program

to the printer, which may be accepted or rejected:

 Print request attributes (PRA) ask for particular printing features, such as two-

sided output, or a paper size.

 Doc attributes (DA) supply information about a document, such as its page size,

use of color, or page ranges for printing.

The two other attributes types are used by the printer service to convey information

about the printer and job back to the program.

 Print service attributes (PSA) give information about the print service, such as the

printer's make and model or whether it is currently accepting jobs.

 Print job attributes (PJA) give information about the status of a particular print

job, such as whether it has successfully finished.

The following code fragment looks for printer services that can print on both sides of

A4 paper:

// stage 1 example using attributes

AttributeSet attrs = new HashAttributeSet();

attrs.add(MediaSizeName.ISO_A4);

attrs.add(Sides.DUPLEX);

PrintService[] services =

 PrintServiceLookup.lookupPrintServices(null, attrs);

AttributeSet is an interface and HashAttributeSet an implementation which supports

the four kinds of attributes.

The easiest way to find out about particular attribute is via the Attribute interface

documentation at

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/jar/Attributes.html,

which lists the attribute subclasses, such as MediaSizeName and Sides used in the

example above.

The next fragment creates a Doc object for a GIF file, a stage 2 task in JPS printing:

// stage 2 : create a Doc object for a GIF file

FileInputStream in = new FileInputStream(fileName);

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 3 © Andrew Davison 2017

Doc doc = new SimpleDoc(in, gifFlavor, null);

The third argument of the SimpleDoc constructor can be a set of document attributes

(DAs).

JPS stage 3 involves the creation of a print job, and perhaps a listener:

// stage 3: print job creation

DocPrintJob job = service[0].createPrintJob();

job.addPrintJobListener(new PrintJobAdapter() {...});

The listener will receive information about the print job's progress as print job

attributes (PJAs).

Stage 4 starts the printing:

job.print(doc, null);

The second argument of print() can be a set of print request attributes (PRAs).

1.1. Listing the Printers

The ListPrinters.java example in this section focuses on JPS stage 1. It prints short

details about all the available printers, fuller information about the default printer, and

a list of printer names. The main() function:

// in ListPrinters.java

public static void main(String [] args)

{

 JPrint.listServices(); // short info

 // JPrint.listServices(true); // full info, but slow to generate

 PrintService ps = PrintServiceLookup.lookupDefaultPrintService();

 System.out.println("Default printer \"" + ps.getName() + "\":");

 JPrint.listService(ps, true); // full info on default printer

 String[] pNames = JPrint.getPrinterNames();

 System.out.println("Printer names (" + pNames.length + "):");

 for(String pName : pNames)

 System.out.println(" " + pName);

} // end of main()

Most of the functionality is implemented by the JPrint.java utility class.

JPrint.listServices() on one of my test machines prints the following:

-------- Print services (16) ----------

1. "Send To OneNote 2010"

 color-supported:supported

 printer-name:Send To OneNote 2010

 queued-job-count:0

 printer-is-accepting-jobs:accepting-jobs

 Supported doc types: image/gif image/jpeg image/png

 application/octet-stream

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 4 © Andrew Davison 2017

2. "Ricoh Aficio MP 2000 PCL(Black Office Room)"

 color-supported:not-supported

 printer-name:Ricoh Aficio MP 2000 PCL(Black Office Room)

 queued-job-count:0

 printer-is-accepting-jobs:accepting-jobs

 Supported doc types: image/gif image/jpeg image/png

 application/octet-stream

 :

 :

16. "CutePDF Writer"

 color-supported:supported

 printer-name:CutePDF Writer

 queued-job-count:0

 printer-is-accepting-jobs:accepting-jobs

 Supported doc types: image/gif image/jpeg image/png

 application/octet-stream application/postscript

The information for each printer consists of four attributes, including its name and the

MIME types that it can process. For example, the Ricoh Aficio MP 2000 printer can

deal with standard graphics formats and "application/octet-stream". This latter type

means that the printer will accept binary printer data, but doesn't mean that it can

correctly print it. For instance, it may be output as a mishmash of ASCII characters.

The service listing methods in JPrint.java:

// in the JPrint class

public static void listServices(boolean showAll)

{ PrintService[] psa =

 PrintServiceLookup.lookupPrintServices(null, null);

 listServices(psa, showAll);

}

public static void listServices(PrintService[] psa,

 boolean showAll)

{ if (psa != null && psa.length > 0) {

 System.out.println("\n-------- Print services (" +

 psa.length + ") ----------\n");

 for (int i = 0; i < psa.length; i++) {

 System.out.println((i+1) + ". \"" + psa[i].getName() + "\"");

 listService(psa[i], showAll);

 }

 System.out.println("------------------\n");

 }

 else

 System.out.println("No print services found");

} // end of listServices()

public static void listService(PrintService ps, boolean showAll)

{

 // print basic attributes

 Attribute[] attrs = ps.getAttributes().toArray();

 for(Attribute attr : attrs)

 System.out.println(" " + attr.getName() + ":" + attr);

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 5 © Andrew Davison 2017

 // print the supported MIME types

 System.out.print(" Supported doc types: ");

 DocFlavor[] flavors = ps.getSupportedDocFlavors();

 for (int j = 0; j < flavors.length; j++) {

 // Filter out DocFlavors that have a representation class other

 // than java.io.InputStream.

 String repclass = flavors[j].getRepresentationClassName();

 if (!repclass.equals("java.io.InputStream")) // restrict to files

 continue;

 System.out.print(" " + flavors[j].getMimeType());

 }

 System.out.println();

 // print every printer attribute

 if (showAll) {

 System.out.println(" ----");

 ArrayList<NamedAttribute> attrList = getAttributes(ps);

 Collections.sort(attrList);

 for (NamedAttribute attr : attrList)

 printAttr(ps, attr.getAttribute());

 }

 System.out.println();

} // end of listService()

The lookupPrintServices() call in listServices():

PrintServiceLookup.lookupPrintServices(null, null)

has no DocFlavor or attribute arguments, so every printer service will be returned in

the array. listServices() iterates through each PrintService object, and prints its basic

attributes, the supported MIME types for files, and optionally a list of every printer

attribute.

The four attributes returned by PrintService.getAttributes() are the tip of a very large

iceberg. Java supports a multitude of attributes as seen if you look at the Java 8

Attribute documentation at

https://docs.oracle.com/javase/8/docs/api/javax/print/attribute/Attribute.html. Over 70

subclasses are listed, including PrinterName, Sides, and Chromacity. A taste of what

can be printed occurs when the default printer's details are listed:

// in ListPrinters.java...

PrintService ps = PrintServiceLookup.lookupDefaultPrintService();

System.out.println("Default printer \"" + ps.getName() + "\":");

JPrint.listService(ps, true); // full info

The default printer for my test machine is an old laser printer. ListPrinter.java reports

the following:

Default printer "HP LaserJet 1200 Series PCL 6":

 color-supported:not-supported

 printer-name:HP LaserJet 1200 Series PCL 6

 queued-job-count:0

 printer-is-accepting-jobs:accepting-jobs

 Supported doc types: image/gif image/jpeg image/png

application/octet-stream

 chromaticity: color

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 6 © Andrew Davison 2017

 copies-supported: null

 ipp-attribute-fidelity: false

 job-name: Java Printing

 media: iso-a4

 media-printable-area: (4.233,4.233)->(197.951,288.459)mm

 orientation-requested: portrait

 page-ranges: 1-2147483647

 printer-resolution: 60000x60000 dphi

 requesting-user-name: Ad

 sheet-collate: uncollated

 sides: one-sided

 spool-data-destination:

file:/C:/Users/Ad/Desktop/LibreOffice%20Tests/Printing%20Tests/o

ut.prn

 sun-alternate-media: null

The "chromacity" attribute states how color and monochrome documents are mapped

to each other. Probably the attribute the user really wants to examne is "color-

supported" which shows that this printer only offers grayscales.

The main drawback of printing all these attributes is the time required to collect them,

sort them, and remove duplicates; each printer may take several seconds to process.

1.2. Discovering Print Services

PrintServiceLookup.lookupPrintServices() should be called with DocFlavor and/or

print request attributes to narrow down the search. Some examples can be found in

Discovery.java. For instance, the following fragment looks for printers that can

process JPEG files:

// in Discovery.java...

DocFlavor flavor = DocFlavor.INPUT_STREAM.JPEG;

PrintService[] psa =

 PrintServiceLookup.lookupPrintServices(flavor, null);

System.out.println("\nServices that support " + flavor);

String[] pNames = JPrint.getPrinterNames(psa);

if (pNames != null)

 for (String pName : pNames)

 System.out.println(" " + pName);

It's very likely that the printers listed by this search can also output PDF, Word,

PowerPoint and other file formats printable from Office, since Office delivers pages

to a printer rendered as images.

However, if a search is made for printers that can process PDF files:

DocFlavor flavor = DocFlavor.INPUT_STREAM.PDF;

PrintService[] psa =

 PrintServiceLookup.lookupPrintServices(flavor, null);

then no matches are found. This means that none of the printers can process PDF by

themselves.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 7 © Andrew Davison 2017

JPrint.findPrinterNames() lets printers be selected based on partial names. The

following call collects all the printers whose names include "HP":

String[] pNames = JPrint.findPrinterNames("HP");

Multiple attributes can be used in a search. The following looks for all the "HP"

printer services that support color:

// in Discovery.java...

AttributeSet attrs = new HashAttributeSet();

System.out.println("\nHP Services that support color:");

PrintService[] psa;

for (String pName : pNames) { // from the "HP" search above

 attrs.clear();

 attrs.add(new PrinterName(pName, null)); // must be included

 attrs.add(ColorSupported.SUPPORTED);

 psa = PrintServiceLookup.lookupPrintServices(null, attrs);

 if (psa.length > 0)

 System.out.println(" " + pName);

}

It's possible to look for color printers with less code:

// in Discovery.java...

AttributeSet attrs = new HashAttributeSet();

attrs.add(ColorSupported.SUPPORTED);

PrintService[] psa =

 PrintServiceLookup.lookupPrintServices(null, attrs);

Unfortunately the returned print services include non-color printers. It seems that the

printer name must be part of the attribute set to get a correct match.

DocFlavors and attributes can be combined, as in the following that looks for a printer

that supports JPEG and A4 paper:

// in Discovery.java...

DocFlavor flavor = DocFlavor.INPUT_STREAM.JPEG;

AttributeSet attrs = new HashAttributeSet();

attrs.add(MediaSizeName.ISO_A4);

PrintService[] psa =

 PrintServiceLookup.lookupPrintServices(flavor, attrs);

A quite different printer selection approach is to display a dialog box at run time to let

the user set the search criteria. Java offers ServiceUI.printDialog() for this, which I've

wrapped inside JPrint.dialogSelect():

// in the JPrint class

public static PrintService dialogSelect()

{

 GUI.setLookFeel();

 PrintService psa[] =

 PrintServiceLookup.lookupPrintServices(null, null);

 PrintService defaultService =

 PrintServiceLookup.lookupDefaultPrintService();

 PrintRequestAttributeSet attrs =

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 8 © Andrew Davison 2017

 new HashPrintRequestAttributeSet(); // none

 PrintService service = ServiceUI.printDialog(null, 100, 100,

 psa, defaultService, null, attrs);

 if (service == null)

 System.out.println("No print service selected");

 return service;

} // end of dialogSelect()

dialogSelect() initializes ServiceUI.printDialog() with a list of printer services, the

default printer, and an empty print request attribute set.

In Discovery.java, JPrint.dialogSelect() is called like so:

// in Discovery.java...

PrintService ps = JPrint.dialogSelect();

if (ps != null) {

 System.out.println("\nYou selected " + ps.getName());

 JPrint.listService(ps, true); // full info

}

The dialog looks like Figure 1.

Figure 1. The ServiceUI.printDialog() Dialog.

Pressing the "Print" button returns a PrintService reference; pressing "Cancel" returns

null.

1.3. Printing Using Java

After a print service has been selected, JPS stages 2-4 involve instantiating a Doc

object, creating a print job, and starting the printing. These are managed by my

JPrint.printFile():

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 9 © Andrew Davison 2017

// in the JPrint class

public static void printFile(PrintService ps, String fnm)

{

 if (ps == null) {

 System.out.println("Print service is null");

 return;

 }

 DocPrintJob printJob = ps.createPrintJob(); // stage 2

 try {

 InputStream is = new FileInputStream(fnm);

 DocFlavor flavor = getFlavor(ps, fnm);

 Doc doc = new SimpleDoc(is, flavor, null); // stage 3

 printJob.print(doc, null); // stage 4

 is.close();

 }

 catch(Exception e) {

 System.out.println("Unable to print " + fnm);

 System.out.println(e);

 }

} // end of printFile()

The user supplies a PrintService and a filename. A DocFlavor for the file is obtained

by JPrint.getFlavor():

// in the JPrint class

public static DocFlavor getFlavor(PrintService ps, String fnm)

{

 DocFlavor flavor = getFlavorFromFnm(fnm);

 System.out.println("File-based DocFlavor: " + flavor);

 if (!ps.isDocFlavorSupported(flavor)) {

 System.out.println("Not supported by printer;

 using autosense");

 flavor = DocFlavor.INPUT_STREAM.AUTOSENSE;

 }

 return flavor;

} // end of getFlavor()

public static DocFlavor getFlavorFromFnm(String fnm)

{

 String ext = fnm.substring(fnm.lastIndexOf('.') + 1).

 toLowerCase();

 if (ext.equals("gif"))

 return DocFlavor.INPUT_STREAM.GIF;

 else if (ext.equals("jpeg"))

 return DocFlavor.INPUT_STREAM.JPEG;

 else if (ext.equals("jpg"))

 return DocFlavor.INPUT_STREAM.JPEG;

 else if (ext.equals("png"))

 return DocFlavor.INPUT_STREAM.PNG;

 else if (ext.equals("ps"))

 return DocFlavor.INPUT_STREAM.POSTSCRIPT;

 else if (ext.equals("pdf"))

 return DocFlavor.INPUT_STREAM.PDF;

 else if (ext.equals("txt"))

 return DocFlavor.INPUT_STREAM.TEXT_PLAIN_HOST;

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 10 © Andrew Davison 2017

 else // try to determine flavor from file content

 return DocFlavor.INPUT_STREAM.AUTOSENSE;

} // end of getFlavorFromFnm

getFlavorFromFnm() uses the file's extension to choose a

DocFlavor.INPUT_STREAM constant, which is checked by the print service in

PrintService.isDocFlavorSupported().

JPrint.printFile() is utilized in my JDocPrinter.java example:

// in JDocPrinter.java

public static void main(String[] args)

{

 if ((args.length < 1) || (args.length > 2)) {

 System.out.println("Usage: java JDocPrinter <filename>

 [<(partial)printer-name>]");

 return;

 }

 String fnm = args[0];

 String pName = null;

 if (args.length == 2) {

 String[] pNames = JPrint.findPrinterNames(args[1]);

 if (pNames != null) {

 System.out.println("Using first match: \"" + pNames[0] + "\"");

 pName = pNames[0];

 }

 }

 if (pName != null)

 JPrint.print(pName, fnm);

 else {

 PrintService ps = JPrint.dialogSelect();

 if (ps != null)

 // JPrint.printMonitorFile(ps, fnm);

 JPrint.printFile(ps, fnm);

 }

} // end of main()

JPrint.printMonitorFile() is fancier version of JPrint.printFile() which attaches a

PrintJobListener to the print job. The listener's methods are triggered as the job passes

through its printing states such as its delivery to the printer, completion, cancellation,

or printing error.

The lines in JPrint.printMonitorFile() that add the listener to the print job are:

// in JPrint.printMonitorFile()...

DocPrintJob printJob = ps.createPrintJob();

printJob.addPrintJobListener(new PJWatcher());

PJWatcher implements the PrintJobListener interface:

// in the JPrint class

private static class PJWatcher implements PrintJobListener

{

 public void printDataTransferCompleted(PrintJobEvent pje)

 { System.out.println(" >> Data transferred to printer"); }

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 11 © Andrew Davison 2017

 public void printJobCanceled(PrintJobEvent pje)

 { System.out.println(" >> Print job was cancelled"); }

 public void printJobCompleted(PrintJobEvent pje)

 { System.out.println(" >> Print job completed successfully"); }

 public void printJobFailed(PrintJobEvent pje)

 { System.out.println(" >> Print job failed"); }

 public void printJobNoMoreEvents(PrintJobEvent pje)

 { System.out.println(" >> No more events will be delivered"); }

 public void printJobRequiresAttention(PrintJobEvent pje)

 { System.out.println(" >> Print job needs attention"); }

} // end of PJWatcher class

1.4. More Information on javax.print

Good sources of information on Java printing include the tutorial at

https://docs.oracle.com/javase/tutorial/2d/printing/ which covers JPS and the older

Java 2D printing API, and the JPS API user guide at

https://docs.oracle.com/javase/8/docs/technotes/guides/jps/spec/JPSTOC.fm.html.

Two books I've found useful:

 Core Java, Volume II -- Advanced Features

Cay S. Horstmann; Gary Cornell

Prentice Hall, 2016, 10th ed.

http://horstmann.com/corejava.html

Chapter 7 includes a section on printing, including a table of attributes.

 Pro Java 8 Programming

Terrill Brett Spell

Apress, 2015, 3rd ed.

http://www.apress.com/9781484206423

Chapter 11 is about printing.

2. Printing in Office

In this section I'll employ the print service search methods in JPrint.java to find a

printer for Office. The service name is passed to functions that use the Office API to

send a document to the printer.

Only a handful of Office methods are required to print a document; the real

complexity of the API is the multitude of properties which configure how the

document is output. Not surprisingly, these properties are spread across many

modules since different document types (i.e. Writer, Draw, Impress, and Calc) are

managed by different parts of the API.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 12 © Andrew Davison 2017

Figure 2 shows the OfficeDocument services and their print-related interfaces. The

words in brackets are the modules where the services are located. The rounded

rectangles refer to print property tables explained later in this chapter.

Figure 2. The OfficeDocument Interface and its Print-related Interfaces.

The XPrintable interface is used when printing Writer, Draw, Impress, or Calc

documents since their services all inherit OfficeDocument. Writer documents can also

employ XPagePrintable for printing. Note that it isn't possible to print databases using

XPrintable.

OfficeDocument also has XPrintJobBroadcaster and XPrintableBroadcaster interfaces

for attaching listeners to a print job. However, XPrintableBroadcaster is no longer

supported, having been superseded by XPrintJobBroadcaster .

The tricky aspects of XPrintable, XPrintJobBroadcaster, and XPagePrintable are the

properties used to configure how they work. XPrintable.getPrinter() and

XPrintable.setPrinter() utilize PrintDescriptor properties, the XPrintJobListener

created by XPrintJobBroadcaster uses PrintableState properties, XPrintable.print()

uses PrintOptions, and XPagePrintable employs PagePrintSettings. I'll be explaining

all of these in due course, with the aid of the tables referred to in Figure 2.

We're not finished with properties yet. There's also several "XXXSettings" services

which configure printing properties within a document. These are summarized by

Figure 3.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 13 © Andrew Davison 2017

Figure 3. The Setting Services.

The rounded rectangles refer to property tables described later in this chapter.

3. Printing any Document

At this point you may be thinking that Office printing is rather complex. In fact, if

you're happy to print a document using the default printing settings then it's fairly

simple. The DocPrinter.java example illustrates this by printing any Office document

supplied on its command line to the default printer or to the one named in the second

command line argument. The complete code:

// in DocPrinter.java

public static void main(String args[])

{

 if ((args.length < 1) || (args.length > 3)) {

 System.out.println("Usage: DocPrinter fnm

 [printer-name [no-of-pages]]");

 return;

 }

 String fnm = args[0];

 String pName = JPrint.getDefaultPrinterName(); // default

 if (args.length > 1) { // 2 or 3 args

 String[] printerNames = JPrint.findPrinterNames(args[1]);

 if (printerNames == null)

 System.out.println("Using default printer: \"" +

 pName + "\"");

 else {

 pName = printerNames[0];

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 14 © Andrew Davison 2017

 System.out.println("Using first matching printer: \"" +

 pName + "\"");

 }

 }

 String pagesStr = "1-"; // default is print all pages

 if (args.length == 3)

 pagesStr = args[2];

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc(fnm, loader);

 if (doc == null) {

 System.out.println("Could not open " + fnm);

 Lo.closeOffice();

 return;

 }

 int docType = Info.reportDocType(doc);

 XPrintable xp = Lo.qi(XPrintable.class, doc);

 if (xp == null)

 System.out.println("Cannot print; XPrintable is null");

 else if (!Print.isPrintable(docType))

 System.out.println("Cannot print that document type");

 else {

 Print.usePrinter(xp, pName);

 Print.reportPrinterProps(xp);

 Print.print(xp, pagesStr);

 }

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

An optional third command line argument is a page range, given in string form. For

instance, "2-4;6" will print pages 2 to 4 and 6 (with the page numbering starting at 1).

The printer name is obtained using methods from my JPrint.java class. The Office

API takes over after the document has been loaded, and utilizes support functions in

my Print.java class (note: no "J" in the name).

The document type is printed and returned by Info.reportDocType() as one of:

Lo.UNKNOWN, Lo.WRITER, Lo.BASE, Lo.CALC, Lo.DRAW, Lo.IMPRESS, or

Lo.MATH.

The loaded document is cast to XPrintable (see Figure 1), and Print.isPrintable() tests

for those document types that can be printed using XPrintable.print():

// in the Print class

public static boolean isPrintable(int docType)

{ return ((docType == Lo.WRITER) || (docType == Lo.CALC) ||

 (docType == Lo.DRAW) || (docType == Lo.IMPRESS)); }

Print.usePrinter() adds the printer's name and paper format to the XPrintable

properties by calling XPrintable.setPrinter() with an array of PrintDescriptor

properties (see Figure 1):

// in the Print.java class

public static void usePrinter(XPrintable xp, String printer)

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 15 © Andrew Davison 2017

{

 if (xp == null) {

 System.out.println("Cannot set printer XPrintable is null");

 return;

 }

 System.out.println("Using printer \"" + printer + "\"");

 xp.setPrinter(Props.makeProps("Name", printer,

 "PaperFormat", PaperFormat.A4));

 setListener(xp);

}

Table 1 lists the PrintDescriptor properties, or use my lodoc.bat script to access the

class' documentation online (type "lodoc PrinterDescriptor").

Property Description

Name Name of the printer.

PaperOrientation Paper orientation

(com.sun.star.view.PaperOrientation:

PORTRAIT, LANDSCAPE)

PaperFormat Paper size formats

(com.sun.star.view.PaperFormat: A3, A4,

A5, B4, B5, LETTER, LEGAL,

TABLOID, USER)

PaperSize Paper size in 100th mm

(com.sun.star.awt.Size).

IsBusy Is the printer busy?

CanSetPaperOrientation Can the paper orientation be set?

CanSetPaperFormat Are other paper formats supported?

CanSetPaperSize Are other paper sizes supported?

Table 1. Properties in com.sun.star.view.PrinterDescriptor.

Print.setListener() inside Print.usePrinter() attaches an XPrintJobListener listener to

the print job by casting XPrintable to XPrintJobBroadcaster (see Figure 1).

// in the Print class

public static void setListener(XPrintable xp)

{

 if (xp == null) {

 System.out.println("Cannot set listener; XPrintable is null");

 return;

 }

 XPrintJobBroadcaster pb = Lo.qi(XPrintJobBroadcaster.class, xp);

 if (pb == null) {

 System.out.println("Cannot obtain print job broadcaster");

 return;

 }

 pb.addPrintJobListener(new XPrintJobListener()

 {

 public void printJobEvent(PrintJobEvent e)

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 16 © Andrew Davison 2017

 { System.out.println("Print Job status: " +

 printableState(e.State)); }

 public void disposing(com.sun.star.lang.EventObject e)

 { System.out.println("Disposing of print job: " + e); }

 });

} // end of setListener()

XPrintJobListener.printJobEvent() is called at different stages during the job's

execution, and Print.printableState() converts the retrieved PrintableState constant

into a more readable string:

// in the Print class

public static String printableState(PrintableState val)

{

 if (val == PrintableState.JOB_STARTED)

 return "JOB_STARTED";

 else if (val == PrintableState.JOB_COMPLETED)

 return "JOB_COMPLETED";

 else if (val == PrintableState.JOB_SPOOLED)

 return "JOB_SPOOLED";

 else if (val == PrintableState.JOB_ABORTED)

 return "JOB_ABORTED";

 else if (val == PrintableState.JOB_FAILED)

 return "JOB_FAILED";

 else if (val == PrintableState.JOB_SPOOLING_FAILED)

 return "JOB_SPOOLING_FAILED";

 else {

 System.out.println("Unknown printable state");

 return "??";

 }

} // end of printableState()

The PrintableState constants are summarized in Table 2.

Enumerator Constant Description

JOB_STARTED Printing/rendering has begun.

JOB_COMPLETED
Printing/rendering has finished; spooling

has begun.

JOB_SPOOLED
Spooling has finished successfully. This

is the "success" state for a print job.

JOB_ABORTED
Printing was aborted (e.g., by the user)

during printing or spooling.

JOB_FAILED The printing ran into an error.

JOB_SPOOLING_FAILED
The document could be printed but not

spooled.

Table 2. Properties in com.sun.star.view.PrintableState enum.

Back in the main() function of DocPrinter.java, Print.reportPrinterProps() outputs the

printer's PrintDescriptor settings (listed in Table 1). It loops through the properties

array returned by XPrintable.getPrinter():

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 17 © Andrew Davison 2017

// in the Print class

public static void reportPrinterProps(XPrintable xp)

{

 if (xp == null) {

 System.out.println("Cannot report printer props");

 return;

 }

 PropertyValue[] printProps = xp.getPrinter();

 if (printProps == null)

 System.out.println("No Printer properties found");

 else {

 System.out.println("Printer properties:");

 String name;

 for (PropertyValue prop : printProps) {

 name = prop.Name;

 if (name.equals("PaperOrientation"))

 System.out.println(" " + name + ": " +

 paperOrientation((PaperOrientation)prop.Value));

 else if (name.equals("PaperFormat"))

 System.out.println(" " + name + ": " +

 paperFormat((PaperFormat)prop.Value));

 else if (name.equals("PaperSize")) {

 Size sz = (Size)prop.Value;

 System.out.println(" " + name + ": (" +

 sz.Width + ", " + sz.Height + ")");

 }

 else

 System.out.println(" " + name + ": " + prop.Value);

 }

 System.out.println();

 }

} // end of reportPrinterProps()

The constants in the PaperOrientation and PaperFormat classes are mapped to more

easily understood strings.

Typical output from Print.reportPrinterProps() is:

Printer properties:

 Name: FinePrint

 PaperOrientation: PORTRAIT

 PaperFormat: A4

 PaperSize: (11906, 16838)

 IsBusy: false

 CanSetPaperOrientation: true

 CanSetPaperFormat: true

 CanSetPaperSize: true

At last it's time to print the document. As Figure 1 indicates, the call to

XPrintable.print() is configured using PrintOptions properties, which are listed in

Table 3.

Property Description

CopyCount Number of copies to print.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 18 © Andrew Davison 2017

FileName Send the output to a file rather than to the

printer.

Collate Collate the printed pages (set to true or

false).

Sort Sort the pages (deprecated; use Collate)

Pages A string that specifies pages and page

ranges to print. For example, "1-4;10" to

print the pages 1 to 4 and 10.

Wait Wait for the print request to be

completed.

DuplexMode Set duplex constant (using

com.sun.star.view.DuplexMode)

PrinterName The name of the printer.

Table 3. Properties in com.sun.star.view.PrintOptions.

The configuration and printing is carried out by Print.print():

// in the Print class

public static void print(XPrintable xp)

{ print(xp, "1-"); } // print all the pages

public static void print(XPrintable xp, String pagesStr)

{

 if (xp == null) {

 System.out.println("Cannot print; XPrintable is null");

 return;

 }

 System.out.println("Print range: " + pagesStr);

 System.out.println("Sending document...");

 PropertyValue[] props =

 Props.makeProps("Pages", pagesStr, "Wait", true);

 // synchronous

 // see com.sun.star.view.PrintOptions

 xp.print(props); // print the document

 System.out.println("Delivered");

} // end of print()

Two properties are set: "Pages" and "Wait". "Pages" could be left out if all of the

document is to printed, but "Wait" is necessary; it forces the print() call to wait until

the job has been delivered to the driver, and so has left the Office process. If "Wait"

wasn't included then DocPrinter could continue and perhaps close Office before it had

fully transmitted the document to the printer. This would cause a crash.

Note that there's no need to set the "PrinterName" property since its already been

supplied as one of the PrintDescriptor properties.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 19 © Andrew Davison 2017

4. Viewing a Document's Print Properties

The previous section looked at printer-related properties stored in PrinterDescriptor

(Table 1) and PrintOptions (Table 2). But the real property mother lode are those

related to documents, which are stored in the many subclasses below the Settings

service (see Figure 3). The ShowPrintProps.java example prints out those properties

for a given input document. The relevant lines are:

// in ShowPrintProps.java...

int docType = Info.reportDocType(doc);

XProperty Set docProps = Print.getDocSettings(docType);

Props.showProps("Document Settings", docProps);

The document type returned by Info.reportDocType() is employed by

Print.getDocSettings() to decide which of the subclasses of the Settings service (once

again, see Figure 3) should be instantiated:

// in the Print class

public static XPropertySet getDocSettings(int docType)

{

 XPropertySet props = null;

 if (docType == Lo.WRITER)

 props = Lo.createInstanceMSF(XPropertySet.class,

 "com.sun.star.text.DocumentSettings");

 else if (docType == Lo.IMPRESS)

 props = Lo.createInstanceMSF(XPropertySet.class,

 "com.sun.star.presentation.DocumentSettings");

 else if (docType == Lo.DRAW)

 props = Lo.createInstanceMSF(XPropertySet.class,

 "com.sun.star.drawing.DocumentSettings");

 else if (docType == Lo.CALC)

 props = Lo.createInstanceMSF(XPropertySet.class,

 "com.sun.star.sheet.DocumentSettings");

 else if (docType == Lo.BASE)

 System.out.println("No document settings for a base doc");

 else if (docType == Lo.MATH)

 System.out.println("No document settings for a math doc");

 else

 System.out.println("Unknown document type");

 return props;

} // end of getDocSettings()

All these setting services support XPropertySet, which is returned as

Print.getDocSettings()'s result.

The printing-related properties defined in the Settings superclass are listed in Table 4,

but it contains many more properties for different aspects of a document. For a full

list, use "lodoc Settings document" to look at the online documentation. The Settings

webpage is also a good starting point for examining its DocumentSettings subclasses.

Property Description

PrinterName Printer used by the document.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 20 © Andrew Davison 2017

PrinterSetup
A byte array containing driver-specific

data.

IsPrintBooklet

Put two document pages on one physical

page, such that you can fold the output

into a booklet.

IsPrintBookletFront Only print the fronts of a booklet

IsPrintBookletBack Only print the backs of a booklet

PrintQuality
Normal (0); Grayscale (1), Black and

white (2).

PrinterIndependentLayout Forbid use of printer metrics for layout.

EmbedFonts
Whether to embed fonts used by the

document.

EmbedSystemFonts
Whether to embed system fonts used by

the document.

Table 4. Printing-related Properties in

com.sun.star.document.Settings.

Writer documents utilize the DocumentSettings service in the text module which

doesn't contain any printing properties, but is far from empty. Again, use "lodoc

DocumentSettings text" to visit its documentation in the text module. Instead, the

print properties are inherited from the PrintSettings service in the text module, which

are listed in Table 5. Use "lodoc PrintSettings text" to visit its documentation.

Property Description

PrintGraphics If true, print graphic objects.

PrintTables If true, print text tables.

PrintDrawings If true, print shapes.

PrintLeftPages If true, print left pages.

PrintRightPages If true, print right pages.

PrintControls If true, then control shapes in the

document (usually inside forms) are

printed.

PrintReversed If true, print the pages in reverse order,

starting with the last page.

PrintPaperFromSetup If true, use the paper tray specified for

the system printer. If false, use the paper

tray specified by the page style.

PrintFaxName Name of the fax machine.

PrintAnnotationMode Specify how notes are printed. Uses

com.sun.star.text.NotePrintMode: NOT,

ONLY, DOC_END, or PAGE_END).

PrintProspect If true, prospect printing is used. Related

to brochures (I think).

PrintPageBackground
Determines if the background color /

background graphic of pages is printed.

PrintBlackFonts Determines if characters are printed in

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 21 © Andrew Davison 2017

black.

PrintEmptyPages
Determines if automatically inserted

empty pages are printed.

Table 5. Properties in com.sun.star.text.PrintSettings.

Back in ShowPrintProps.java, the properties are printed with Props.showProps(). The

output is quite lengthy since every setting is printed, not just the printing-related ones

in my tables. Typical output when a Writer file is examined includes:

 :

PrintAnnotationMode == 0

PrintBlackFonts == false

PrintControls == true

PrintDrawings == true

PrintEmptyPages == false

PrintFaxName ==

PrintGraphics == true

PrintHiddenText == false

PrintLeftPages == true

PrintPageBackground == true

PrintPaperFromSetup == false

PrintProspect == false

PrintProspectRTL == false

PrintReversed == false

PrintRightPages == true

PrintSingleJobs == false

PrintTables == true

PrintTextPlaceholder == false

PrinterIndependentLayout == 3

PrinterName ==

PrinterSetup == [B@1222c14

PropLineSpacingShrinksFirstLine == true

ProtectForm == false

RedlineProtectionKey == [B@6d8acf

Rsid == 537223

 :

A Calc file uses the DocumentSettings service in the sheet module (use "lodoc

DocumentSettings sheet" to examine its documentation). However, printing-related

properties are stored elsewhere, in the GlobalSheetSettings and PageStyle services,

which need additional code to access them as I'll explain later.

An Impress file uses DocumentSettings in the presentation module (see "lodoc

DocumentSettings service presentation"); its printing-related properties are given in

Table 6.

Property Description

IsPrintDrawing Enables or disables the printing of the

drawing pages.

IsPrintNotes Enables or disables the printing of the

notes pages.

IsPrintHandout Enables or disables the printing of the

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 22 © Andrew Davison 2017

handout pages.

IsPrintOutline Enables or disables the printing of the

outline pages.

IsPrintHiddenPages Enables or disables the printing of draw

pages that are marked as hidden.

IsPrintFitPage Enables or disables the fitting of the page

to the printable area during printing.

IsPrintTilePage If this is true and the paper size for

printing is larger than the paper size of

the printer than the content is tiled over

multiple pages.

Table 6. Printing-related Properties in

com.sun.star.presentation.DocumentSettings.

Draw documents are similar to presentations, and this is reflected in the

DocumentSettings service in the drawing module (see "lodoc DocumentSettings

service drawing") which offers a subset of the slide properties. The printing-related

ones are listed in Table 7.

Property Description

IsPrintFitPage Enables or disables the fitting of the page

to the printable area during printing.

IsPrintTilePage If this is true and the paper size for

printing is larger than the paper size of

the printer than the content is tiled over

multiple pages.

Table 7. Printing-related Properties in

com.sun.star.drawing.DocumentSettings.

The drawing and presentation DocumentSettings services inherit the Settings service,

and a HeaderFooterSettings service in the documents folder (see "lodoc

HeaderFooterSettings"), which add the properties in Table 8.

Property Description

IsPrintPageName Enables or disables the printing of the

page name in the header or footer.

IsPrintDate Enables or disables the printing of the

date in the header or footer.

IsPrintTime Enables or disables the printing of the

current time in the header or footer.

Table 8. Properties in

com.sun.star.document.HeaderFooterSettings.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 23 © Andrew Davison 2017

4.1. Additional Writer Print Properties

As Figure 2 indicates, Writer Documents have access to an XPagePrintable interface

offered by the GenericTextDocument service (see "lodoc XPagePrintable"). It has a

print method, XPagePrintable.printPages() which utilizes properties stored in the

PagePrintSettings service (see Table 9). These relate to the document's margins and

printing multiple pages on a single sheet.

Property Description

PageRows
Number of page rows on each

printed page.

PageColumns
Number of page columns on each

printed page.

LeftMargin Left margin of the printed page.

RightMargin Right margin.

TopMargin Top margin.

BottomMargin Bottom margin.

HoriMargin Margin between page rows.

VertMargin Margin between page columns.

IsLandscape Print in landscape format?

Table 9. Properties in com.sun.star.text.PagePrintSettings.

These properties are printed by casting the document to XPagePrintable:

// part of ShowPrintProps.java...

if (docType == Lo.WRITER) {

 XPagePrintable xpp = Lo.qi(XPagePrintable.class, doc);

 PropertyValue[] printProps = xpp.getPagePrintSettings();

 Props.showProps("Page print settings", printProps);

}

Typical output is:

Properties for "Page print settings":

 PageRows: 1

 PageColumns: 1

 LeftMargin: 0

 RightMargin: 0

 TopMargin: 0

 BottomMargin: 0

 HoriMargin: 0

 VertMargin: 0

 IsLandscape: false

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 24 © Andrew Davison 2017

4.2. Additional Calc Print Properties

Figure 3 indicates that a Calc document has three sources of printing-related

properties: DocumentSettings in the sheet module, GlobalSheetSettings also in the

sheet module, and PageStyle in the style module.

In a break with usual Office conventions, the GlobalSheetService service (see "lodoc

GlobalSheetSettings") doesn’t store the properties; instead they're maintained by its

XGlobalSheetSettings interface (see "lodoc XGlobalSheetSettings). The printing-

related properties are listed in Table 10.

Property Description

PrintAllSheets Specifies whether all sheets or only

selected sheets are printed.

PrintEmptyPages Specifies whether empty pages are

printed.

UsePrinterMetrics Specifies whether printer metrics are used

for display.

Table 10. Printing-related Properties in

com.sun.star.sheet.XGlobalSheetSettings.

This organization of the documentation may be an error, since the

XGlobalSheetSettings properties are accessed in the usual way, by instantiating the

GlobalSheetSettings service, and casting it to XPropertySet:

XPropertySet globalSheetProps =

 Lo.createInstanceMCF(XPropertySet.class,

 "com.sun.star.sheet.GlobalSheetSettings");

Props.showProps("Global Sheet Settings", globalSheetProps);

GlobalSheetSettings properties are applied to all sheets, so you may want to reset a

changed property to its original value after a print. There's an example of using global

sheet settings in PrintSheet.java later in this chapter.

Another source of spreadsheet properties is the PageStyle service. I explained page

styles in Chapter 22, so I refer you back there for the details. A page style is

associated with a sheet, and so it's necessary to first choose a sheet to examine, and

then access its "PageStyle" property:

XSpreadsheetDocument ssDoc = Calc.getSSDoc(doc);

XSpreadsheet sheet = Calc.getSheet(ssDoc, 0); // first sheet

String styleName = (String) Props.getProperty(sheet, "PageStyle");

System.out.println("\nPageStyle of first sheet: " + styleName);

The page style name is used to lookup the properties for that particular style:

XPropertySet props = Info.getStyleProps(doc, "PageStyles",

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 25 © Andrew Davison 2017

 styleName);

Props.showProps(styleName + " PageStyles", props);

Props.showProps() prints an extensive list of properties, drawn form several services

in the PageStyle hierarchy. A simplified version of that hierarchy is shown in Figure

4.

Figure 4. Part of the PageStyle Service Hierarchy.

I'm only interested in printing-related properties in this chapter. Some come from the

PageProperties service in the style module (see "lodoc PageProperties style"), as listed

in Table 11.

Property Description

Lots of border props…

Lots of margin props…

IsLandscape Determines if the page format is

landscape.

PrinterPaperTray Contains the name of a paper

tray of the selected printer.

Lots of header props…

Lots of footer props…

Lots of grid props…

GridPrint Determines whether text grid

lines are printed.

Table 11. Printing-related Properties in

com.sun.star.style.PageProperties.

Many more print properties come from TablePageStyle in the sheet module (see

"lodoc TablePageStyle", which are given in Table 12.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 26 © Andrew Davison 2017

Property Description

PrintAnnotations Enables printing of cell annotations.

PrintGrid Enables printing of the cell grid.

PrintHeaders Enables printing of column and row

headers.

PrintCharts Enables printing of charts.

PrintObjects Enables printing of embedded objects.

PrintDrawing Enables printing of drawing objects.

PrintFormulas Enables printing of formulas instead of their

results.

PrintZeroValues Enables printing of zero-values.

PrintDownFirst Specifies the print order for the pages within

each sheet.

PageScale Contains the scaling factor (in percent) for

printing the sheet.

ScaleToPages Contains the number of pages the sheet will

use for printing.

ScaleToPagesX Contains the number of horizontal pages the

sheet will be printed on.

ScaleToPagesY Contains the number of vertical pages the

sheet will be printed on.

LeftPageHeaderContent Contains the content of the header for the

left pages

(com.sun.star.sheet.XHeaderFooterContent).

RightPageHeaderContent Contains the content of the header for the

right pages

(com.sun.star.sheet.XHeaderFooterContent).

LeftPageFooterContent Contains the content of the footer for the left

pages

(com.sun.star.sheet.XHeaderFooterContent).

RightPageFooterContent Contains the content of the footer for the

right pages

(com.sun.star.sheet.XHeaderFooterContent).

Table 12. Printing-related Properties in

com.sun.star.sheet.TablePageStyle.

5. Specialized Printing

In this section I'll use some of the document properties just described to control how

Writer, Impress, and Calc documents are printed. The example code is in

TextPrinter.java, ImpressPrinter.java, SheetPrinter.java, and PrintSheet.java.

The sad news is that although TextPrinter.java and ImpressPrinter.java successfully

print their documents, the API ignores most of the changes to the properties. Perhaps

even sadder (from a programming perspective) is the fact that these same documents

are correctly printed if the properties are set via Office's GUI.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 27 © Andrew Davison 2017

Aside from this, the print GUI in Office offers more functionality than the API. For

example, it's possible to output multiple slides and sheets on a single page through the

print dialog but not with API calls.

5.1. Printing a Text Document

TextPrinter.java sends a text document to a specified printer, with two pages printed

on each sheet.

After the document has been loaded, the printing is carried out by:

// part of TextPrinter.java...

XPrintable xp = Lo.qi(XPrintable.class, doc);

Print.usePrinter(xp, pName);

XPagePrintable xpp = Lo.qi(XPagePrintable.class, doc);

PropertyValue[] props = xpp.getPagePrintSettings();

Props.setProp(props, "IsLandscape", true);

Props.setProp(props, "PageColumns", (short)2);

xpp.setPagePrintSettings(props);

xpp.printPages(new PropertyValue[1]); // empty array of props

To help understand what the code is doing, refer back to Figure 2. The document is

cast to XPrintable so the printer settings can be initialized by Print.usePrinter(). Then

the document is cast to XPagePrintable so its PagePrintSettings properties can be

configured. That's done via XPagePrintable.setPagePrintSettings() and finally

XPagePrintable.printPages() is called with an empty array.

The document is printed but unfortunately the two pages/sheet and landscape settings

are ignored.

This bug has been known for many years, and some people have suggested an

alternative implementation where the properties are passed to

XPagePrintable.printPages() rather than to XPagePrintable.setPagePrintSettings().

The last two lines from above would be replaced by:

xpp.printPages(props);

Unfortunately this produces the same output in my tests.

If the Writer document is printed through the Office GUI, then the print dialog looks

something like Figure 5.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 28 © Andrew Davison 2017

Figure 5. The Writer application's Print Dialog.

The pages/sheet settings are on the "Page Layout" tab, as in Figure 6.

Figure 6. The "Page Layout" Tabbed Window in the Print Dialog.

When "Ok" is pressed, the document is printed correctly.

5.2. Printing an Impress Document

ImpressPrinter.java prints an Impress document to the specified printer in handout

format, six slides per sheet, in black and white. A4 paper in landscape mode is

utilized.

After the document has been loaded, the printing is carried out by the following code:

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 29 © Andrew Davison 2017

// part of ImpressPrinter.java...

// set document props

XPropertySet props = Lo.createInstanceMSF(XPropertySet.class,

 "com.sun.star.presentation.DocumentSettings");

Props.setProperties(props,

 new String[] {"IsPrintHandout","SlidesPerHandout","IsPrintFitPage",

 "IsPrintDate", "PrintQuality", "PrinterName" },

 new Object[] { true, (short)6, true, true, 2, pName} // 2 == B&W

);

Props.showProps("Document Settings", props);

// set printer props

XPrintable xp = Lo.qi(XPrintable.class, doc);

Print.usePrinter(xp, pName);

xp.setPrinter(Props.makeProps(

 "PaperOrientation", PaperOrientation.LANDSCAPE,

 "PaperFormat", PaperFormat.A4));

Print.reportPrinterProps(xp);

Print.print(xp);

To help understand what the code is doing, refer back to Figure 2. A presentation

DocumentSettings service is created, and its printing properties set. The

"PrintQuality" and "PrinterName" properties are from the Settings service (see Table

4), "IsPrintHandout" and "IsPrintFitPage" are from DocumentSettings (see table 6),

and "IsPrintDate" from HeaderFooterSettings (see Table 8). This leaves the

"SlidesPerHandout" property, which isn't documented anywhere. I discovered it by

looking at the print-out of that service's properties with:

Props.showProps("Document Settings", props);

The printer properties are set as in earlier examples, but with the addition of

"PaperOrientation" and "PaperFormat" which are PrintDescriptor properties (see table

1).

The document is printed but as one color slide per sheet; the handout and black and

white settings are ignored.

If the same Impress document is printed through the Office GUI, then the print dialog

looks like Figure 7.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 30 © Andrew Davison 2017

Figure 7. The Impress application's Print Dialog.

This is much closer to what I want to output, although I couldn't print the handouts in

landscape mode.

5.3. Printing a Calc Document

SheetPrinter.java prints the first sheet of a Calc document, scaled so that two pages

are used in the vertical direction. Also, the paper is set to landscape mode and A4

size, and the header's central field is modified. In addition, commented-out code

restricts the printed area of the sheet to be a single column.

The good news is that all of these setting are correctly processed at print-time.

After the document has been loaded, the printing is carried out by:

// part of SheetPrinter.java...

XSpreadsheet sheet = Calc.getSheet(doc, 0); // first sheet

String styleName = (String) Props.getProperty(sheet, "PageStyle");

// get the properties set for the sheet's page style

XPropertySet props =

 Info.getStyleProps(doc, "PageStyles", styleName);

Props.setProperty(props, "ScaleToPagesY", (short)2);

 // use a max of 2 pages on the y-axis

Props.showProps(styleName, props);

showTotalsHeader(props);

/*

 // print only the "E" column

 XPrintAreas printAreas = Lo.qi(XPrintAreas.class, sheet);

 printAreas.setPrintAreas(new CellRangeAddress[] {});

 // reset print areas

 CellRangeAddress addr = Calc.getAddress(sheet, "E1:E111");

 printAreas.setPrintAreas(new CellRangeAddress[]{ addr });

 // set area

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 31 © Andrew Davison 2017

*/

// set printer settings

XPrintable xp = Lo.qi(XPrintable.class, doc);

Print.usePrinter(xp, pName);

PropertyValue[] printProps =

 Props.makeProps("PaperOrientation", PaperOrientation.LANDSCAPE,

 "PageFormat", PaperFormat.A4);

xp.setPrinter(printProps);

Print.reportPrinterProps(xp);

Print.print(xp);

The scaling is done by accessing the sheet's page style properties, and setting the

"ScaleToPagesY" value. This is one of the TablePageStyle properties listed in Table

12.

Headers and Footers

The headers and footers are manipulated by showTotalsHeader():

// in SheetPrinter.java

private static void showTotalsHeader(XPropertySet props)

// change the header of the sheet

{

 // get the right-hand header and footer

 XHeaderFooterContent header =

 Calc.getHeadFoot(props, "RightPageHeaderContent");

 XHeaderFooterContent footer =

 Calc.getHeadFoot(props, "RightPageFooterContent");

 // print details about them

 Calc.printHeadFoot("Right Header", header);

 Calc.printHeadFoot("Right Footer", footer);

 // modify the header center text to be "Totals"

 Calc.setHeadFoot(header, Calc.HF_CENTER, "Totals");

 // turn on headers and make left and right page headers the same

 Props.setProperty(props, "HeaderIsOn", true);

 Props.setProperty(props, "HeaderIsShared", true);

 // from style.PageProperties

 Props.setProperty(props, "RightPageHeaderContent", header);

 } // end of showTotalsHeader()

A sheet may have two headers (one for the left hand page, one for the right) and two

footers, which are accessed as XHeaderFooterContent objects (see "lodoc

XHeaderFooterContent"). XHeaderFooterContent is a collection of three XText

instances representing the left, center, and right of the content area.

The headers and footers are accessed via the sheet's page style properties, stored as

the properties "LeftPageHeaderContent", "RightPageHeaderContent",

"LeftPageFooterContent", and "RightPageFooterContent" in the TablePageStyle

service (see Table 12).

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 32 © Andrew Davison 2017

Calc.getHeadFoot() retrieves the page style properties, and returns the requested

XHeaderFooterContent:

// in the Calc class

public static XHeaderFooterContent getHeadFoot(XPropertySet props,

 String content)

{ return Lo.qi(XHeaderFooterContent.class,

 Props.getProperty(props, content)); }

Calc.printHeadFoot() prints the three text fields inside the XHeaderFooterContent

object:

// in the Calc class

public static void printHeadFoot(String title,

 XHeaderFooterContent hfc)

{ XText left = hfc.getLeftText();

 XText center = hfc.getCenterText();

 XText right = hfc.getRightText();

 System.out.println(title + ": \"" + left.getString() + "\" : \"" +

 center.getString() + "\" : \"" +

 right.getString() + "\"");

} // end of showHeadFoot()

Calc.setHeadFoot() can change the text in the left, center, or right of a

XHeaderFooterContent instance:

// in the Calc class

public static void setHeadFoot(XHeaderFooterContent hfc,

 int region, String text)

{ XText xText = getRegion(hfc, region);

 if (xText == null) {

 System.out.println("Could not set text");

 return;

 }

 XTextCursor headerCursor = xText.createTextCursor();

 headerCursor.gotoStart(false);

 headerCursor.gotoEnd(true);

 headerCursor.setString(text);

} // end of setHeadFoot()

public static XText getRegion(XHeaderFooterContent hfc, int region)

{

 if (hfc == null) {

 System.out.println("Header/footer content is null");

 return null;

 }

 if (region == HF_LEFT)

 return hfc.getLeftText();

 else if (region == HF_CENTER)

 return hfc.getCenterText();

 else if (region == HF_RIGHT)

 return hfc.getRightText();

 else {

 System.out.println("Unknown header/footer region");

 return null;

 }

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 33 © Andrew Davison 2017

} // end of getRegion()

Back in SheetPrinter.java, showTotalsHeader() changes the central text field of the

right header to "Totals". It then switches on the display of headers, makes the left and

right headers the same, and inserts the modified XHeaderFooterContent instance back

into the page styles:

// part of showTotalsHeader() in SheetPrinter.java...

Props.setProperty(props, "HeaderIsOn", true);

Props.setProperty(props, "HeaderIsShared", true);

 // from style.PageProperties

Props.setProperty(props, "RightPageHeaderContent", header);

Print Areas

A sheet is usually manipulated via the XSpreadsheet interface in the Spreadsheet

service. However, Spreadsheet supports a number of other interfaces, including

XPrintAreas for specifying printable areas within a sheet. This interface is illustrated

in Figure 8.

Figure 8. The Spreadsheet XPrintAreas Interface.

Aside from defining printable areas, XPrintAreas also has methods for setting which

rows and/or columns are repeated if a sheet spans several pages.

The commented out code in SheetPrinter.java does two things: it cancels any existing

print areas, and specifies that only the "E" column will be printed:

// part of SheetPrinter.java...

XPrintAreas printAreas = Lo.qi(XPrintAreas.class, sheet);

printAreas.setPrintAreas(new CellRangeAddress[] {});

 // cancel print areas

CellRangeAddress addr = Calc.getAddress(sheet, "E1:E111");

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 34 © Andrew Davison 2017

printAreas.setPrintAreas(new CellRangeAddress[]{ addr });

 // set area to be the "E" column

5.4. Printing a Single Sheet

My thanks to user "villeroy" on the OpenOffice forums for suggesting this example:

how is a single sheet of a multi-sheet spreadsheet printed?

One part of the solution is to set the "PrintAllSheets" property to false in the

GlobalSheetSettings service (see Table 10). The other is to make the current sheet

explicitly active in the XSpreadsheetView interface, which is equivalent to bringing

the sheet to the foreground in the Calc application.

The PrintSheet.java example shows how to do this for a spreadsheet of three sheets,

where only "Sheet2" is printed:

// in PrintSheet.java

public static void main(String args[])

{

 // hardwired spreadsheet and printer choice

 String fnm = "tables.ods";

 String pName = "FinePrint";

 // load the spreadsheet

 XComponentLoader loader = Lo.loadOffice();

 XComponent cDoc = Lo.openReadOnlyDoc(fnm, loader);

 XSpreadsheetDocument doc = Calc.getSSDoc(cDoc);

 if (doc == null) {

 System.out.println("Could not open " + fnm);

 Lo.closeOffice();

 return;

 }

 // what are the sheets called?

 String[] sheetNms = Calc.getSheetNames(doc);

 System.out.println("Names of sheets (" + sheetNms.length + "):");

 for(String sheetNm : sheetNms)

 System.out.println(" " + sheetNm);

 // make "Sheet2" active

 XSpreadsheet sheet = Calc.getSheet(doc, "Sheet2");

 Calc.setActiveSheet(doc, sheet);

 // set Global Sheet settings

 // changes are remembered

 XPropertySet gsProps =

 Lo.createInstanceMCF(XPropertySet.class,

 "com.sun.star.sheet.GlobalSheetSettings");

 Props.setProperty(gsProps, "PrintAllSheets", false);

 System.out.println();

 Props.showProps("Global Sheet Settings", gsProps);

 // set printer settings

 XPrintable xp = Lo.qi(XPrintable.class, doc);

 Print.usePrinter(xp, pName);

 PropertyValue[] printProps =

 Props.makeProps("PaperOrientation", PaperOrientation.LANDSCAPE,

 "PageFormat", PaperFormat.A4);

 xp.setPrinter(printProps);

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 35 © Andrew Davison 2017

 Print.print(xp);

 // reset global settings

 Props.setProperty(gsProps, "PrintAllSheets", true);

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

One issue with changing GlobalSheet settings is that they are remembered after Office

has closed, and will be used by default during future prints. In that case, it's a good

idea to reset the "PrintAllSheets" to true after the Print.print() call.

6. A Bad Idea: Hacking the GUI

A recurring observation of the last few sections is that printer dialogs inside Office are

less buggy and more feature-rich than the API. In previous chapters, I've sometimes

resorted to using Office's GUI by sending dispatch messages, and key presses to the

window. I decided not to follow that approach here since it's too unreliable.

Getting to the print dialog is straightforward. The document window is made visible,

and an ".uno:Print" dispatch opens the print dialog:

GUI.setVisible(doc, true);

Lo.delay(1000); // give the Office window time to appear

Lo.dispatchCmd("Print");

Lo.delay(500); // give the Print dialog time to appear

The first problem is that the print dialog uses tabbed windows, and the window that's

foremost can vary. Usually it's the "General" window (e.g. see Figure 5), but if the

user has previously clicked the "Ok" button in another tabbed window (such as the

"Page Layout" window in Figure 6) then that window will be foremost when the print

dialog is next invoked. This means that my code cannot be sure which tabbed window

is active after the "Print" dispatch.

There's also the issue of moving around the tabbed windows and their fields. This can

be implemented using Java's Robot class to send TAB and CTRL-TAB characters, as

in:

private static void ctrlTab()

// send a CTRL-TAB character combination

{ try {

 Robot robot = new Robot();

 robot.keyPress(KeyEvent.VK_CONTROL);

 robot.keyPress(KeyEvent.VK_TAB);

 robot.delay(100);

 robot.keyRelease(KeyEvent.VK_TAB);

 robot.keyRelease(KeyEvent.VK_CONTROL);

 }

 catch(AWTException e)

 { System.out.println(e); }

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 36 © Andrew Davison 2017

} // end of ctrlTab()

The difficulty is knowing how many TABs and CTRL-TABs are needed, which

depends on the tab ordering of each window.

Even if my code somehow managed to get to the correct field in the correct tabbed

window, there's still the problem of entering data and 'pressing' the "Ok" button

afterwards.

On balance, I decided not to bother implementing this 'solution'.

7. Command Prompt Printing

Another approach to printing documents, which avoids the use of Java, is to utilize

command line utilities.

There's no shortage of command line printing tools in Linux and the Mac OS, based

around the CUPS printing system (http://www.cups.org/), and plenty of sites

explaining how to use lp, lpq, lpstat and others (e.g.

http://www.computerhope.com/unix/ulp.htm,

http://www.eecs.utk.edu/resources/it/kb/printing/linux-command-line).

Perhaps less well known are the printing utilities in Windows, listed in Table 13.

VBScript Purpose

Prnmngr.vbs Printer management. Adds, deletes, and

lists printers or printer connections, in

addition to setting and displaying the

default printer.

Used by printersList.bat

Prncnfg.vbs Configures or displays configuration

information about a printer.

Used by printerStatus.bat

Prnjobs.vbs Pauses, resumes, cancels, and lists print

jobs.

Used by printerJobs.bat

Prnqctl.vbs Printer queue management. Prints a test

page, pauses or resumes a printer, and

clears a printer queue.

Used by printerClean.bat

Prndrvr.vbs Adds, deletes, and lists printer drivers.

Prnport.vbs Printer port management.

Pubprn.vbs Publish a printer to Active Directory.

Table 13. Windows 7's VBScript Printing Utilities.

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 37 © Andrew Davison 2017

The utilities are Visual Basic scripts, located in the

C:\Windows\System32\Printing_Admin_Scripts\en-US\ folder which isn't a standard

part of Window's PATH environment variable.

One way of finding documentation on these tools is by starting "Windows Help" and

then following the links to the commands reference section. This will eventually take

you to Microsoft's TechNet website. A slightly easier alternative is the TechRepublic

article "How to take advantage of the hidden VBScript print utilities in Windows 10"

by Greg Shultz at http://www.techrepublic.com/article/how-to-take-advantage-of-the-

hidden-vbscript-print-utilities-in-windows-10/.

In my "Printing Tests" examples folder, there are four Batch files (printersList.bat,

printerStatus.bat, printerJobs.bat, and printerClean.bat) which use these VBScripts in

simple ways.

printersList.bat lists the names of all the print services visible to Windows, and also

the name of the default printer. For example:

> printersList

Printer name Send To OneNote 2010

Printer name Ricoh Aficio MP 2000 PCL(Black Office Room)

Printer name PrinterShare

Printer name Print to Evernote

Printer name Microsoft XPS Document Writer

Printer name HPLJM806 (HP LaserJet M806)

Printer name HP LaserJet9040DN PCL 6(Office)

Printer name HP LaserJet M806 PCL 6

Printer name HP LaserJet 1200 Series PCL 6

Printer name Foxit PhantomPDF Printer

Printer name FinePrint

Printer name Fax

The default printer is FinePrint

These names can be used as printer name arguments in my earlier Java programs.

printerStatus.bat reports the status of a printer:

> printerStatus "HP LaserJet 1200 Series PCL 6"

Printer status Idle

Extended printer status Unknown

printerJobs.bat lists all the print jobs currently on a printer's queue:

> printerJobs "HP LaserJet 1200 Series PCL 6"

Number of print jobs enumerated 0

printerClean.bat deletes all the jobs on a printer queue:

> printerClean "HP LaserJet 1200 Series PCL 6"

Microsoft (R) Windows Script Host Version 5.8

Copyright (C) Microsoft Corporation. All rights reserved.

Success Purge Printer HP LaserJet 1200 Series PCL 6

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 38 © Andrew Davison 2017

Notably missing from the VBScripts is a way to print a document, perhaps because

Windows already has an awesome "print" command:

> print /?

Prints a text file.

PRINT [/D:device] [[drive:][path]filename[...]]

 /D:device Specifies a print device.

An alternative is "printui" which starts Window's printui.dll

(https://technet.microsoft.com/en-us/library/ee624057(v=ws.11).aspx).

However, I'd not recommend "print" or "printui" since Office is a much better

command line printing tool.

If you open a command prompt in the Office directory (e.g. in C:\Program

Files\LibreOffice 5), you can get a list of its command line options by typing:

> soffice.exe –h

Figure 9 shows the top half of a long window.

Figure 9. Some of Office Command Line Arguments.

Another information source is the "Starting the LibreOffice Software With

Parameters" webpage at

https://help.libreoffice.org/Common/Starting_the_Software_With_Parameters.

The relevant parameters for printing are "-p" and "--pt", which can be seen near the

bottom of Figure 9. "-p" prints a file to the default printer, while "--pt" (note the two '-

Java LibreOffice Programming. Chapter 41. Printing Draft #3 (20th March 2017)

 39 © Andrew Davison 2017

's) sends the document to the named printer. A suitable name can be obtained from

the printersList.bat script.

I've utilized these parameters in a loprint.bat script in the "Printing Tests" folder. If

loprint is called with no arguments, then Figure 9's help window is displayed. If a

filename argument is supplied then the document is sent to the default printer using

the '-p' parameter. Two arguments are assumed to be a printer name and filename, and

are processed by "--pt". For example:

> loprint "HP LaserJet 1200 Series PCL 6" cover.odg

prints the cover.odg Draw file to the HP laserjet.

